Radiation Oncology

Initial Certification Qualifying (Computer-based) Exam:
Study Guide for Radiation and Cancer Biology

This exam tests your knowledge of the principles of radiation and cancer biology underlying the practice of radiation oncology. Included are questions on the general domains listed below. Exam performance will be reported to you based on an overall pass/fail grade, with specific information provided regarding quintile performance in the 10 individual domains. Because of the nature of scientific knowledge and subcategories, there may be some overlap of items across domains. Each exam will include items from every domain, but individual subtopics may not be included in every exam and the number of items per domain depends on the domain.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Interaction of radiation with matter</td>
<td>1% to 4%</td>
</tr>
<tr>
<td>II. Molecular and cellular damage and repair</td>
<td>13% to 17%</td>
</tr>
<tr>
<td>III. Cellular response to radiation</td>
<td>7% to 10%</td>
</tr>
<tr>
<td>IV. Linear energy transfer (LET) and oxygen effect</td>
<td>3% to 5%</td>
</tr>
<tr>
<td>V. Tumor biology and microenvironment</td>
<td>3% to 5%</td>
</tr>
<tr>
<td>VI. Cancer biology</td>
<td>19% to 23%</td>
</tr>
<tr>
<td>VII. Radiobiology of normal tissues</td>
<td>9% to 12%</td>
</tr>
<tr>
<td>VIII. Dose delivery</td>
<td>11% to 15%</td>
</tr>
<tr>
<td>IX. Combined modality therapy</td>
<td>11% to 15%</td>
</tr>
<tr>
<td>X. Late effects and radiation protection</td>
<td>6% to 9%</td>
</tr>
</tbody>
</table>

The ranges above are those generally in effect for the exam to be administered in 2020 and are intended only for guidance in candidate preparation. They do not necessarily represent a precise number of scorable items.

I. Interaction of radiation with matter
 a. Definition of ionizing radiation, free radicals, and radical damage
 b. Direct and indirect action of radiation, numbers and types of DNA lesions
 c. Consequences of unreppaired DNA DSB

II. Molecular and cellular damage and repair
 a. Molecular mechanisms of DNA damage
 i. Assays for measuring DNA damage and repair
 ii. Single lethal hits, accumulated damage, and multiple damaged sites
 b. Molecular mechanisms of DNA repair
 i. Repair of base damage, single-strand and double-strand breaks
ii. DSB repair: Homologous recombination and non-homologous end joining
iii. Molecular mechanisms of DNA DSB damage recognition and damage signaling to initiate repair
c. Cellular recovery
 i. Repair at the cellular level
 ii. Sublethal damage repair
 iii. Dose-rate effects and repair
 iv. Dose-fractionation effects and repair
d. Chromosome and chromatid damage
 i. Assays for measuring chromosome damage – Giemsa to FISH
 ii. Dose-response relationships
 iii. Use of peripheral blood lymphocytes in in vivo dosimetry
 iv. Human genetic diseases that affect DNA repair, fragility, and radiosensitivity
 v. Stable and unstable chromatid and chromosome aberrations

III. Cellular responses to radiation
a. Mechanisms of cell death
 i. Mechanisms and major characteristics of pathways of radiation-induced apoptosis, necrosis, autophagy, and senescence
 ii. Mitotic-linked cell death and chromosome aberrations
 iii. Cell division post-radiation and time to clonogen death
b. Cell and tissue survival assays: measurement of response
 i. In vitro clonogenic assays - effects of dose and dose rate
 ii. In vivo clonogenic assays - bone marrow stem cell assays, jejunal crypt stem cell assay, skin clones, and kidney tubules
c. Models of cell survival
 i. Random nature of cell killing and Poisson statistics
 ii. Single hit, multitarget models of cell survival – survival curve descriptors
 iii. Linear-quadratic models: definition of α/β ratio
 iv. Calculations of cell survival with dose and dose rate
 v. Shapes of the dose-response curves for early and late responding tissues
 vi. Isoeffect curves and impact of changing fraction size and number on survival and LQ parameters

IV. Linear energy transfer (LET) and oxygen effect
a. Linear energy transfer
 i. Definition of LET and quality of radiation
 ii. RBE defined
 iii. RBE as a function of LET in cells and tissues
 iv. Effect on RBE on change in fractionation
b. Oxygen Effect
 i. Definition of OER
 ii. Dose or dose per fraction effects
 iii. OER vs LET
 iv. Impact of O_2 concentration
 v. Mechanisms of oxygen effect

V. Tumor biology and microenvironment
a. Solid tumor assay systems
 i. Concept of xenograft and syngeneic tumor models
ii. Assay of tumor response to treatment—growth delay

iii. TCD50 tumor control assay

b. Tumor microenvironment
 i. Characteristics of tumor vasculature and microenvironment; effect of radiation on them
 ii. How tumor microenvironment can regulate tumor growth and vasculature
 iii. Angiogenesis and neovasculogenesis
 iv. Clinical consequence and relevance of hypoxia in tumors and tumor progressions
 v. Reoxygenation after irradiation
 vi. Cellular and molecular responses to hypoxia and hypoxia-induced signal transduction
 vii. Cellular composition of tumors
 viii. Immune microenvironment and role of inflammation

VI. Cancer biology
 a. Cell and tissue kinetics
 i. Methods to assess cell cycle kinetics
 ii. Proteins involved in cell cycle control and checkpoint initiation (e.g., CDKs, cyclins, CDK inhibitors)
 iii. Phases of cell cycle and radiation sensitivity
 iv. Cell cycle arrest and redistribution after irradiation
 b. Molecular signaling
 i. Main signaling pathways and critical proteins involved (e.g., PI3K/AKT, RAS/ERK, TGF-β, Wnt, Notch, NFkB)
 a) Receptors/ligand (e.g., EGFR, VEGFR, c-MET, HER2, FGFR, ALK)
 b) Kinases
 1). Definition of kinases (e.g., STKs, TKs/RTKs, DSKs)
 2). Common kinases in cancer (e.g., ATM, ATR, Chk1, Chk2, PI3K, MAPK) and corresponding phosphatases (e.g., PTEN)
 ii. Molecular signaling pathways activated by IR
 iii. Transcription factors involved in cancer regulation (e.g., MYC, TP53 and associated proteins)
 iv. Cell death pathways and main associated players
 a). Intrinsic vs extrinsic apoptosis (caspases)
 b). BCL-2 family member proteins (pro- vs anti-apoptotic)
 c. Mechanisms of cancer development
 i. Hallmarks of cancer and how they could affect 4/5 Rs of radiobiology
 ii. Common oncogenes (e.g., HER2/neu, Ras, Myc) & tumor suppressors (Rb, p16, p53, BRCA1/BRCA2, APC, NF1)
 iii. Telomeres and pathways in cancer to overcome telomere shortening (e.g., TERT promoter mutations and alternative lengthening of telomeres [ALT])
 iv. Signaling abnormalities and association with treatment response
 iv. Cancer as a genetic disease
 v. Multistep nature of carcinogenesis
 vi. Signaling abnormalities in carcinogenesis
 vii. Prognostic and therapeutic significance of tumor characteristics
 d. Cancer genetics/genomics
 i. Types of epigenetic regulation (e.g., DNA methylation (DNMTs/TETs), histone modifications (e.g. HDACs/HATs), chromatin remodelers)
 ii. Main epigenetic alterations (e.g., CpG island methylator phenotype [CIMP]) in cancer
 a). IDH1/2 mutations in glioma and AML
 b). TET2 mutations in AML
iii. Epigenetic targets in cancer (DNMTi, HDACi, IDHi, EZH2i)
iv. Omics approaches in cancer (next-gen sequencing/arrays) and newer methods (ctDNA)
v. Biomarkers in cancer (e.g., BCR-ABL, EGFR, ALK)
vi. Molecular profiling of cancer

VII. Radiobiology of normal tissues
a. Clinically relevant normal tissue responses to radiation
 i. Responses in early versus late responding tissues
 ii. Reirradiation
b. Mechanisms of normal tissue radiation responses
 i. Molecular and cellular responses in slowly and rapidly proliferating tissues
 ii. Mechanisms underlying clinical symptoms
 iii. Tissue kinetics
c. Total body irradiation
 i. Prodromal radiation syndrome
 ii. Acute radiation syndromes
 iii. Mean lethal dose and dose/time responses
 iv. Immunological effects
 v. Assessment and treatment of radiation accidents
 vi. Bone marrow transplantation

VIII. Dose delivery
a. Therapeutic ratio
 i. Tumor control probability (TCP) curves
 ii. Normal tissue complication probability (NTCP) curves
 iii. Causes of treatment failure
b. Time, dose, and fractionation
 i. The four R’s of fractionation
 ii. Radiobiological rationale behind dose fractionation
 iii. Effect of tissue/tumor type on the response to dose fractionation (α/β ratios)
 iv. Quantitation of multifraction survival curves
 v. BED and isoeffect dose calculations
 vi. Hypofractionation
c. Brachytherapy
 i. Dose-rate effects (HDR and LDR)
 ii. Choice of isotopes
 iii. Radiolabeled antibodies and other ligands
d. Radiobiological aspects of different radiation modalities
 i. Protons, high LET sources
 ii. Stereotactic radiosurgery/radiotherapy, IMRT, IORT, and systemic radionuclides
 iii. Dose distributions and dose heterogeneity

IX. Combined modality therapy
a. Chemotherapeutic agents and radiation therapy
 i. Classes of chemotherapy agents
 ii. Mechanisms of action
 iii. Oxygen effect on radiation therapy and chemotherapy
 iv. Main drug resistance mechanisms (e.g., MDR genes)
 v. Interactions/synergism of chemotherapy with radiation therapy
 vi. Targeted therapeutic agents
b. Radiosensitizers, bioreductive drugs, and radioprotectors
 i. Definition of therapeutic window
 ii. Tumor radiosensitizers (e.g., oxygen) and mimics (e.g., nitromidazole)
 iii. Normal tissue radioprotectors (e.g., amifostine)
 iv. Biological response modifiers (e.g., IL-2 and IFN)
 v. DNA repair inhibitors (e.g., PARPi, ATM, ATRi, Chk1/2i)

c. Immune therapeutics
 i. Types of immunotherapy treatments in oncology
 a) Monoclonal antibodies (MABs)
 b) Checkpoint inhibitors
 c) Cytokines
 d) Vaccines
 e) Adoptive cell transfer types (chimeric antigen receptors [CARs], tumor infiltrating lymphocytes [TILs], and T cell receptors [TCRs])
 ii. Combination of immune therapies and radiation
 a) Recently published trials (e.g., PACIFIC, KEYNOTE)
 b) Known predictors of response/biomarkers

d. Hyperthermia

X. Late effects and radiation protection
a. Radiation carcinogenesis
 i. Dose response for radiation-induced cancers
 ii. Importance of age at exposure, time since exposure, sex, and tissue
 iii. Second tumors in radiation therapy patients
 iv. Risk estimates in humans
b. Heritable effects of radiation
 i. Relative vs absolute mutation risk
 ii. Doubling dose
 iii. Heritable effects in humans
 iv. Risk estimates for hereditable effects

c. Radiation effects in the developing embryo
 i. Dependence of abnormalities and death on dose and gestational stage
 ii. Microcephaly, intellectual disabilities

d. Radiation protection
 i. Stochastic effects and tissue reactions
 ii. Tissue and radiation weighting factors
 iii. Equivalent dose, effective dose, committed dose
 iv. Dose limits for occupational and public exposure

References: References are intended as a resource for exam takers and will form the sources for the majority of individual items in the exam. Individual items may be sourced from references not cited in this study guide. Primary references are intended to be the source of the majority of exam items.

Secondary references are for individual smaller categories of items.

Primary References:
- Hall, EJ.; Giaccia, AJ., Radiobiology for the Radiologist, 8th Ed., 2018, Lippincott Williams & Wilkins, Phila., Pa
Secondary References:

NOTE: This study guide is subject to future revision as feedback is received on both content and clarity.